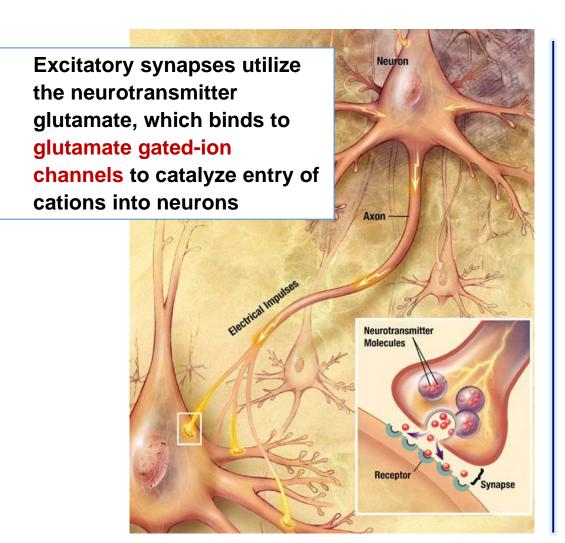
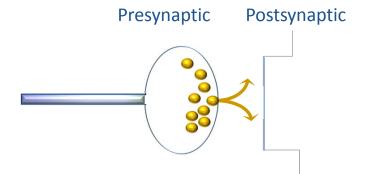

## **Epilepsy Genetics Update 2020**


## **Molecular Studies of Genes Associated with Epilepsies:**


## **GRIN** gene family (NMDA receptors)

## Stephen Traynelis

Center for Functional Evaluation of Rare Variants (CFERV)
Dept of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA

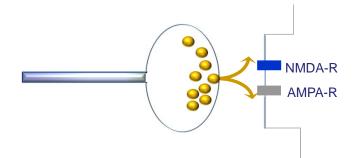


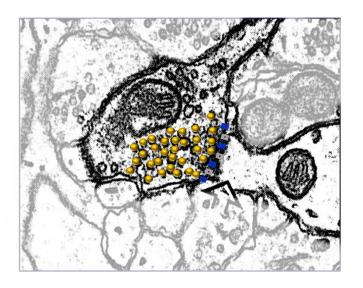






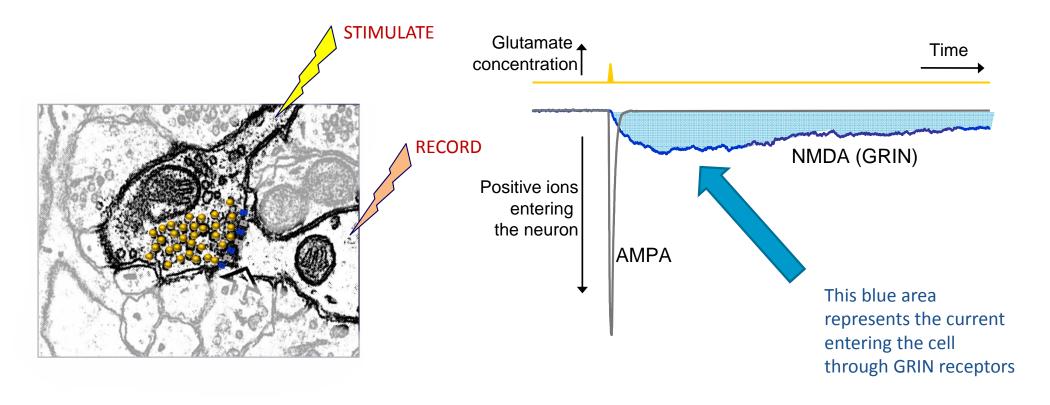
#### **Glutamate receptor subtypes**


AMPA, kainate, delta, **NMDA**, and metabotropic


### NMDA receptors are encoded by 5 genes

GRIN1, GRIN2A, GRIN2B, GRIN2C, GRIN2D

# NMDA receptors are present in all neurons and are important for:

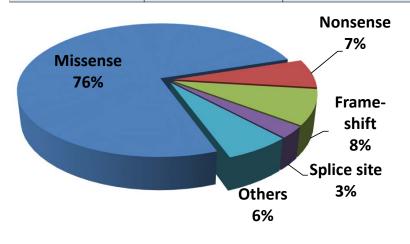

Excitatory synaptic transmission Plasticity, learning, memory Neuronal development

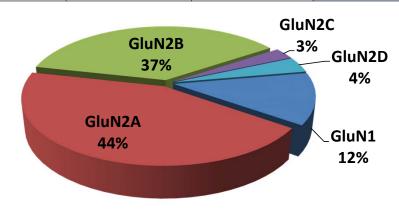




### Stimulation of a pre-synaptic neuron while recording from a post-synaptic neuron reveals an excitatory synaptic current flowing through glutamate receptors

NMDA receptors mediate a slow inward current carried by Na<sup>+</sup> and Ca<sup>2+</sup>





# NMDA receptors are encoded by 5 GRIN genes that show fewer than expected naturally occurring variation

| HGNC gene | Residual Variation Intolerance (%tile) |
|-----------|----------------------------------------|
| GRIN2B    | 1.09                                   |
| GRIN2A    | 1.17                                   |
| GRIN2D    | 4.56                                   |
| GRIN1     | 4.67                                   |
| GRIN3A    | 67.5                                   |
| GRIN2C    | 81.7                                   |

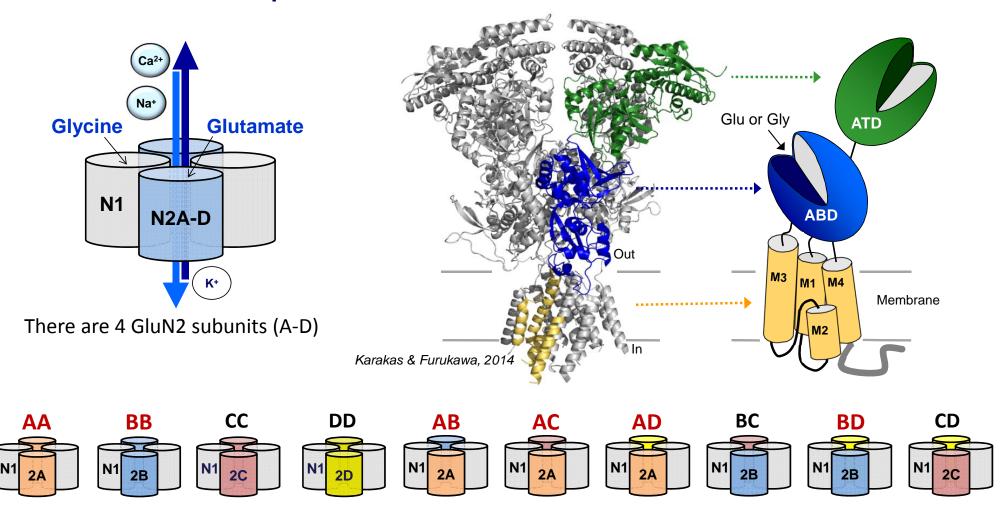
# A large number of *GRIN* variants have been identified in patients (~700 positions described in the Literature, ClinVar)

|                | Missense | Nonsense | Frameshift | Splice | Other | Total |
|----------------|----------|----------|------------|--------|-------|-------|
| GRIN1, GluN1   | 80       | 4        | 1          | 0      | 0     | 85    |
| GRIN2A, GluN2A | 202      | 21       | 32         | 13     | 29    | 297   |
| GRIN2B, GluN2B | 192      | 21       | 19         | 6      | 14    | 252   |
| GRIN2C, GluN2C | 13       | 1        | 5          | 0      | 0     | 19    |
| GRIN2D, GluN2D | 26       | 0        | 0          | 0      | 0     | 26    |
| Total          | 513      | 47       | 57         | 19     | 43    | 679   |

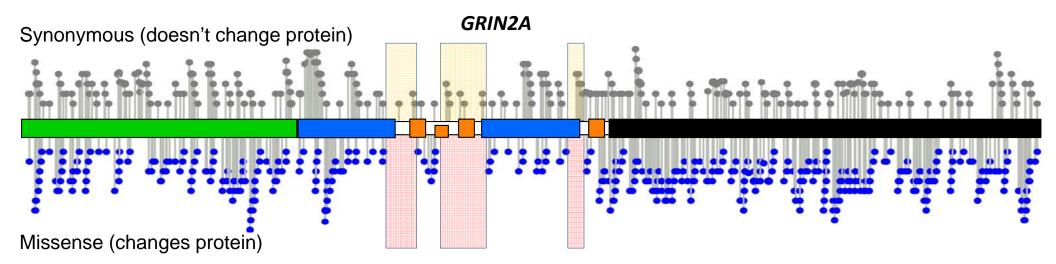




## Numbers of patients with *GRIN* variants

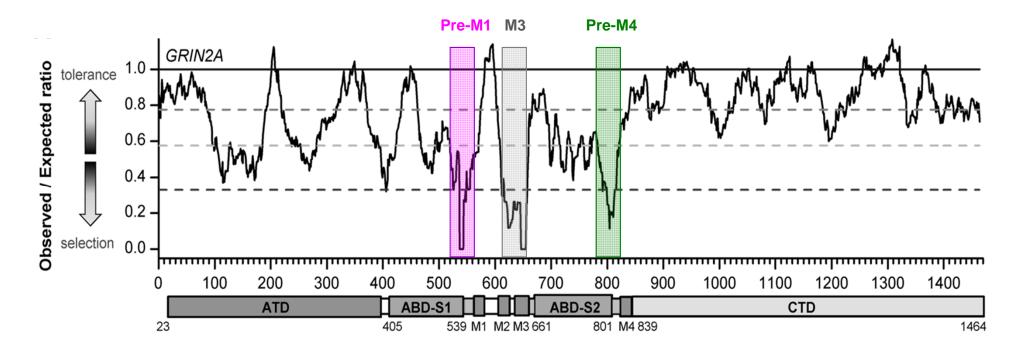

|                | Total | ID  | EPI | ASD | SCZ/BP | ADHD | MD |
|----------------|-------|-----|-----|-----|--------|------|----|
| GRIN1, GluN1   | 85    | 35  | 25  | 4   | 20     | 3    | 0  |
| GRIN2A, GluN2A | 297   | 184 | 198 | 19  | 27     | 5    | 5  |
| GRIN2B, GluN2B | 252   | 185 | 99  | 33  | 10     | 5    | 2  |
| GRIN2C, GluN2C | 19    | 4   | 1   | 8   | 0      | 7    | 0  |
| GRIN2D, GluN2D | 26    | 12  | 12  | 5   | 0      | 8    | 0  |
| Total          | 679   | 420 | 335 | 69  | 57     | 28   | 7  |

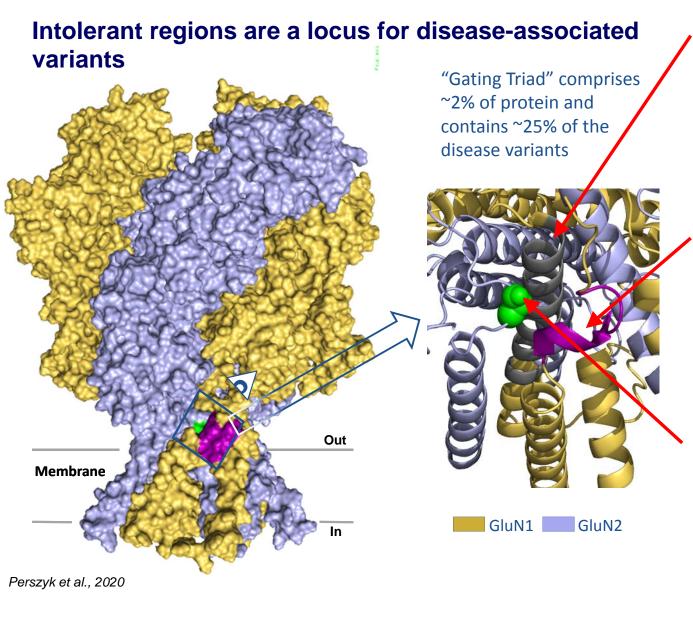
Number of patients with GRIN Variants in 2018 (Lemke, Brain, 2020)


| GRIN1  | 5.45 / 100,000 births | (207 / yr) |
|--------|-----------------------|------------|
| GRIN2A | 3.23 / 100,000 births | (122 / yr) |
| GRIN2B | 5.91 / 100,000 births | (224 / yr) |
| GRIN2D | 4.65 / 100,000 births | (175 / yr) |

Depending on life span, there could be 5,000-20,000 patients with GRIN variants in the US

## NMDA receptors are tetrameric assemblies of GluN1 and GluN2





## The ratio of synonymous to non-synonymous variants identifies vulnerable regions



# The pre-M1 helix, conserved M3 gating motif, and pre-M4 linker are <u>invariant</u> in the healthy population

There are fewer variants than expected in these regions, which suggests purifying selection and crucial roles





#### **M3/SYTANLAAF** Variants

| GluN1-A637V | GluN1-F654C  | GluN2A-L649V | GluN2B-A652G |
|-------------|--------------|--------------|--------------|
| GluN1-M641I | GluN1-L655Q  | GluN2A-F652V | GluN2B-I655F |
| GluN1-I642L | GluN2A-S632F | GluN2A-M653I | GluN2D-V667I |
| GluN1-I643V | GluN2A-W634X | GluN2A-M653V | GluN2D-L670F |
| GluN1-V644M | GluN2A-A635T | GluN2A-I654T | GluN2D-A675T |
| GluN1-A645S | GluN2A-A638V | GluN2B-A636P | GluN2D-A678D |
| GluN1-Y647C | GluN2A-L642R | GluN2B-A636V | GluN2D-M681I |
| GluN1-Y647S | GluN2A-A643D | GluN2B-A639V | GluN2D-M681I |
| GluN1-N650I | GluN2A-S644G | GluN2B-Y646C |              |
| GluN1-N650K | GluN2A-T646A | GluN2B-N649T |              |
| GluN1-A652V | GluN2A-T646R | GluN2B-N649S |              |
| GluN1-A653G | GluN2A-N648S | GluN2B-A652P |              |
|             |              |              |              |

#### **Pre-M1 Variants**

| ۰ | GluN2A-A548P | GluN1-R548Q    |
|---|--------------|----------------|
|   | GluN2A-E551K | GluN1-S549R    |
|   | GluN2A-P552R | GluN1-L551P    |
|   | GluN2A-S554R | GluN1-D552E    |
|   | GluN2A-S556F | GluN1-Q556X    |
|   | GluN2B-R540H | GluN1-P557R    |
|   | GluN2B-S541R | GluN1-P557L    |
|   | GluN2B-F550S | GluN1-Q559R    |
|   | GluN2B-P553L | GluN1-S560dup  |
|   | GluN2B-P553T | GluN2A-S547del |
|   | GluN2B-S555I | GluN2A-A548T   |
|   | GluN2D-S573F |                |

#### Pre-M4/M4 Variants

| GluN1-P805L | GluN1-G827R  | GluN2A-A818E | GluN2B-A819T |
|-------------|--------------|--------------|--------------|
| GluN1-A806E | GluN2A-S809R | GluN2B-E807K | GluN2B-G820A |
| GluN1-A806V | GluN2A-L812M | GluN2B-V808I | GluN2B-G820E |
| GluN1-T807I | GluN2A-I814T | GluN2B-S810N | GluN2B-G820V |
| GluN1-A814D | GluN2A-D815E | GluN2B-S810R | GluN2B-G820R |
| GluN1-G815R | GluN2A-M817V | GluN2B-N817S | GluN2B-M824R |
| GluN1-G815V | GluN2A-M817T | GluN2B-M818T | GluN2B-L825V |
| GluN1-F817L | GluN2A-M817R | GluN2B-M818L | GluN2B-G826E |
| GluN1-M818L | GluN2A-A818T | GluN2B-M818R |              |

### **Center for Functional Evaluation of Rare Variants (CFERV)**



- In 2014 the number of new variants identified by sequencing outnumbered those with functional data by over **20:1**
- Functional data was rarely comprehensive and not comparable between papers
- CFERV's goal is to provide **comprehensive**, **comparable data** on all relevant variants in the glutamate receptor family in a standardized assay format
- This allows **clinical stratification** and development of mechanistic hypotheses, and informs selection of variants for development of animal models
- CFERV obtains variants from the literature, from ClinVar, from patients, from clinical collaborators, as well as from gnomAD

### GluN2 controls multiple distinct functional properties

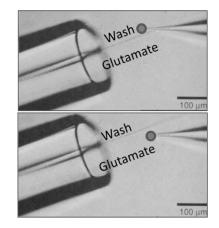
# Sensitivity Sensitivity Sensitivity Glutamate EC<sub>50</sub> 5.4 µM

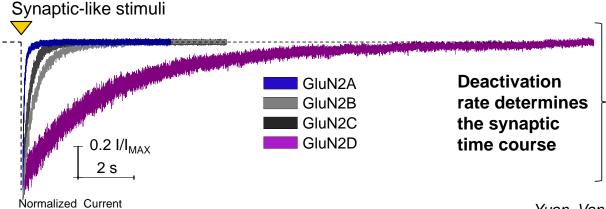
- Glycine EC<sub>50</sub> **1.1** μM
- Inhibited by **0.02-0.1** μM Zn<sup>2+</sup>
- Current flow into

to neuro-

transmitter, endogenous

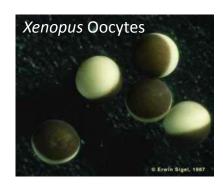
modulators

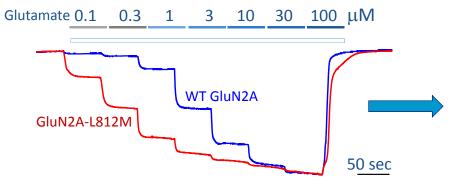

Signal timing

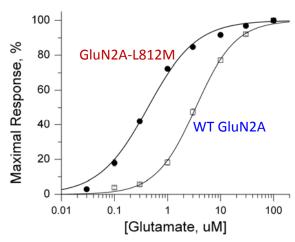

cell

- P<sub>OPEN</sub> ~ **0.5**
- Larger conductance
- Higher Ca<sup>2+</sup> permeability
- More Mg<sup>2+</sup> sensitive
- Deactivation fast 50 ms

#### GluN1/GluN2D


- Glutamate EC<sub>50</sub> 0.5 μM
- Glycine EC<sub>50</sub> **0.2** μM
- Inhibited by 20-40 µM Zn<sup>2+</sup>
- P<sub>OPEN</sub> ~ **0.01** 
  - Smaller conductance
- Lower Ca<sup>2+</sup> permeability
- Less Mg<sup>2+</sup> sensitive
- Deactivation slow 5000 ms




Yuan, Vance, Traynelis

## CFERV performs functional analysis of up to 8 parameters for *GRIN* variants



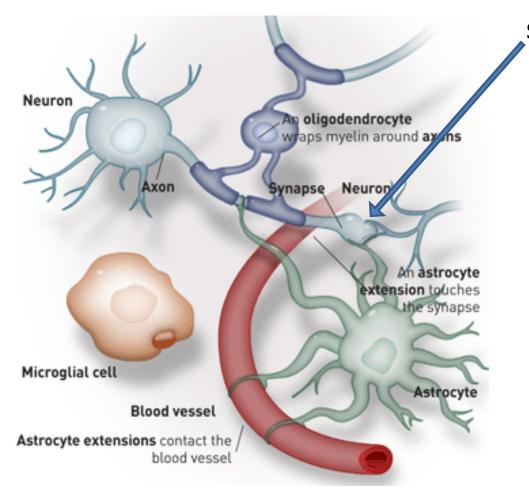




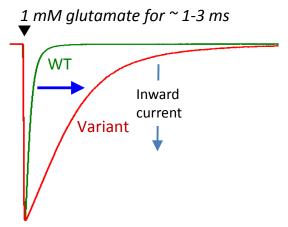


#### **Robotic patch clamp**

lifts cells in front of a rapid application system to apply synaptic-like concentrations *Craig Forest, GaTech* 


| Gene   | # Missense<br>Variants with Full<br>or Partial Data Set |  |  |
|--------|---------------------------------------------------------|--|--|
| GRIN1  | 84                                                      |  |  |
| GRIN2A | 159                                                     |  |  |
| GRIN2B | 151                                                     |  |  |
| GRIN2C | 3                                                       |  |  |
| GRIN2D | 12                                                      |  |  |
| Total  | 409                                                     |  |  |

# Determination of functional properties for variants yields complex data sets


|              | <b></b> .      |                                       |                                     |                                   |                            |                               |                             |                                      |          |                                      |               |
|--------------|----------------|---------------------------------------|-------------------------------------|-----------------------------------|----------------------------|-------------------------------|-----------------------------|--------------------------------------|----------|--------------------------------------|---------------|
| Receptor     | Pheno-<br>type | Glutamate<br>EC <sub>50</sub> ,µM (n) | Glycine<br>EC <sub>50</sub> ,µM (n) | tau <sub>w</sub><br>ms (n)        | Amplitude, peak, pA/pF (n) | Glutamate<br>EC <sub>50</sub> | Glycine<br>EC <sub>50</sub> | Mg <sup>2+</sup><br>IC <sub>50</sub> | рН,<br>% | Zn <sup>2+</sup><br>IC <sub>50</sub> | Zn²+<br>min % |
| WT GluN2A    |                | 3.4 ± 0.11 (51)                       | 1.2 ± 0.05 (76)                     | 51 ±2.5 (46)                      | 136 ± 19 (41)              |                               |                             |                                      |          |                                      |               |
| GluN2A-V452M | SCZ            | 1.0 ± 0.13(10)*                       | $1.1 \pm 0.11$ (12)                 | $70 \pm 6.4 (7)$                  | $152 \pm 55$ (6)           | 3.3                           | 0                           | 0                                    | 0        | 0                                    | 0             |
| GluN2A-G483R | Epi            | 54 ± 6.3 (10)*                        | $1.5 \pm 0.12$ (16)                 | $20 \pm 3.0 \ (10)^*$             | 30 ± 11 (10)*              | -12.5                         | 0                           | 0                                    | 1.5      | -3.3                                 | 0             |
| GluN2A-R504W | Epi            | 2.8 ± 0.18 (6)                        | $0.96 \pm 0.04$ (4)                 | $89\pm8.7~(12)^{\textstyle\star}$ | $59 \pm 13 \ (14)$         | 0                             | 0                           | 0                                    | 1.3      | 1.9                                  | 2.4           |
| GluN2A-V506A | Epi            | 2.0 ± 0.18 (6)*                       | $1.1 \pm 0.11$ (12)                 | 81 ± 13 (7)                       | $67\pm34\ (7)$             | 2.3                           | 0                           | 0                                    | 1.2      |                                      |               |
| GluN2A-K669N | Epi            | 1.1 ± 0.49 (6)*                       | $0.31 \pm 0.05 (10)^*$              | $239 \pm 30 \ (13)^*$             | $143 \pm 40 \ (11)$        | 4.7                           | 4.9                         | 0                                    | 0        | 0                                    | -1.9          |
| GluN2A-V685G | Epi            | 270 ± 11 (10)*                        | $1.5 \pm 0.14$ (6)                  | $24 \pm 2.7 \ (10)^*$             | $7.1 \pm 3.1 \ (8)^*$      | -126                          | 0                           |                                      | -1.2     | 0                                    | 0             |
| GluN2A-I694T | Epi            | 9.8 ± 0.37 (12)*                      | $0.94 \pm 0.13$ (9)                 | $45 \pm 3.7 (11)$                 | 57 ± 15 (8)*               | -2.9                          | 0                           | 0                                    | 0        | -3.2                                 | 0             |
| GluN2A-P699S | Epi            | 2.2 ± 0.33 (6)*                       | $1.3 \pm 0.23$ (8)                  | $52 \pm 4.7 (7)$                  | $98\pm51\ (7)$             | 2.4                           | 0                           | 0                                    | 0        | -1.7                                 | -1.8          |
| GluN2A-M705V | Epi            | 5.7 ± 0.14 (8)*                       | $1.0 \pm 0.15$ (8)                  | $57 \pm 9.1$ (6)                  | $34\pm19\ (5)$             | -1.4                          | 0                           | 2                                    | -2.1     | 0                                    | 0             |
| GluN2A-A716T | Epi            | 20 ± 1.9 (10)*                        | $1.3 \pm 0.09$ (11)                 | $32 \pm 3.6 \ (13)^*$             | 63 ± 15 (14)               | -6.6                          | 0                           | 0                                    | 0        | 0                                    | -1.4          |
| GluN2A-A727T | Epi            | 5.1 ± 0.37 (10)*                      | $1.4 \pm 0.09$ (8)                  | $50\pm4.2~(6)$                    | $83\pm24\ (6)$             | -1.7                          | 0                           | 0                                    | 0        | 0                                    | 0             |
| GluN2A-D731N | Epi            | 6418 ± 278 (7)*                       | $1.5 \pm 0.26$ (10)                 | #                                 | $0.22 \pm 0.16 \ (5)^*$    | -2913                         | 0                           | 0                                    | -1.6     | -5.3                                 | 0             |
| GluN2A-V734L | Epi            | 5.1 ± 0.80 (8)*                       | $1.3 \pm 0.10$ (12)                 | $30 \pm 2.3 \ (11)^*$             | $69 \pm 24 \ (12)$         | -1.5                          | 0                           | 0                                    | 0        | 0                                    | 0             |
| GluN2A-K772E | Epi            | 4.8 ± 0.17 (10)*                      | $1.3 \pm 0.09$ (10)                 | $47 \pm 5.6 \ (13)$               | $55 \pm 22 \ (13)^*$       | -1.6                          | 0                           | 0                                    | -1.2     | 0                                    | 0             |
| WT GluN2B    |                | 1.5 ± 0.07 (57)                       | 0.38 ± 0.03 (47)                    | 570 ± 23 (35)*                    | 41 ± 5.0 (31)*             |                               |                             |                                      |          |                                      |               |
| GluN2B-E413G | ID             | 79 ± 5.3 (12)*                        | $0.32 \pm 0.02$ (8)                 | $20\pm1.3\ (9)^{\textstyle\star}$ | $3.3 \pm 1.3 \ (8)^*$      | -57                           | 0                           | 0                                    | 0        |                                      |               |
| GluN2B-C456Y | ID             | 0.39 ± 0.03 (14)*                     | $1.0 \pm 0.05 (7)^*$                | #                                 | $0.03 \pm 0.01$ (6)*       | 3                             | -3.1                        | 0                                    | 3.4      |                                      |               |
| GluN2B-C461F | Epi            | 169 ± 9.0 (14)*                       | $0.15 \pm 0.007$ (8)*               | $28 \pm 1.8 (6)^*$                | 4.2 ± 1.0 (6)*             | -95                           | 1.7                         | 0                                    | 2.5      |                                      |               |
| GluN2B-R696H | ID             | 0.33 ± 0.07 (8)*                      | $0.44 \pm 0.01$ (7)                 | 2079 ± 165 (8)*                   | $10 \pm 3.6 (7)^*$         | 12.2                          | 0                           | 0                                    |          |                                      |               |

Swanger et al., 2016

## Both <u>specific</u> and <u>net</u> functional consequences contribute to mechanism

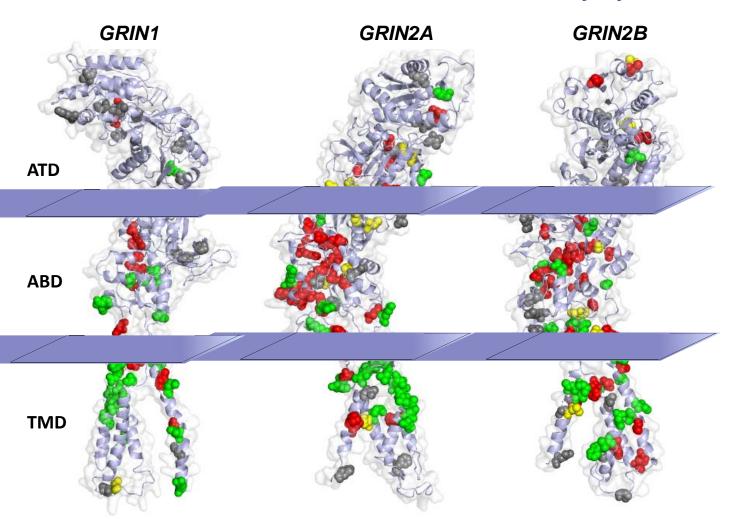


## Synaptic charge transfer



#### Amplitude is controlled by:

Agonist EC<sub>50</sub>
Surface expression
Open probability
Sensitivity to Mg<sup>2+</sup> + Endogenous modulators


#### Time course controlled by:

Deactivation time course and glutamate unbinding

# Estimating variant effects on synaptic and non-synaptic function

|              | Relative Synaptic | Synaptic         | Relative Non-synaptic | Non-synaptic     |
|--------------|-------------------|------------------|-----------------------|------------------|
|              | charge transfer   | Result           | charge transfer       | Result           |
| GluN2A-V452M | 1.4               | Gain of Function | 3.7                   | Gain of Function |
| GluN2A-G483R | 8.5E-02           | Loss of Function | 1.6E-02               | Loss of Function |
| GluN2A-R504W | 0.26              | Loss of Function | 0.19                  | Loss of Function |
| GluN2A-V506A | 2.0               | Gain of Function | 2.4                   | Gain of Function |
| GluN2A-K669N | 1.2               |                  | 0.87                  |                  |
| GluN2A-V685G | 4.2E-02           | Loss of Function | 1.5E-03               | Loss of Function |
| GluN2A-I694T | 0.35              | Loss of Function | 0.15                  | Loss of Function |
| GluN2A-P699S | 0.76              |                  | 1.3                   |                  |
| GluN2A-M705V | 0.28              | Loss of Function | 0.17                  | Loss of Function |
| GluN2A-A716T | 0.08              | Loss of Function | 0.02                  | Loss of Function |
| GluN2A-A727T | 0.32              | Loss of Function | 0.24                  | Loss of Function |
| GluN2A-D731N | 1.3E-02           | Loss of Function | 5.1E-05               | Loss of Function |
| GluN2A-V734L | 0.49              | Loss of Function | 0.61                  | Loss of Function |
| GluN2A-K772E | 5.7E-02           | Loss of Function | 4.8E-02               | Loss of Function |
| GluN2B-E413G | 3.4E-03           | Loss of Function | 2.0E-03               | Loss of Function |
| GluN2B-C456Y | 0.06              | Loss of Function | 0.21                  | Loss of Function |
| GluN2B-C461F | 5.0E-03           | Loss of Function | 1.0E-03               | Loss of Function |
| GluN2B-R696H | 1.9               | Gain of Function | 2.4                   | Gain of Function |

## **Functional effects vary by domain**



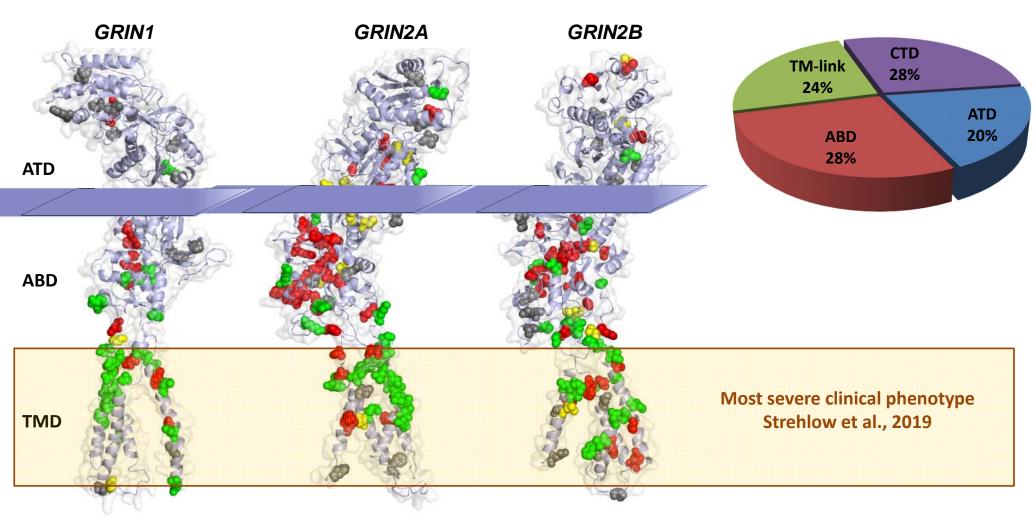
CTD N=52 Variants, 6% LOF, 10% GOF, 84% uncertain, no effect

Gain of function

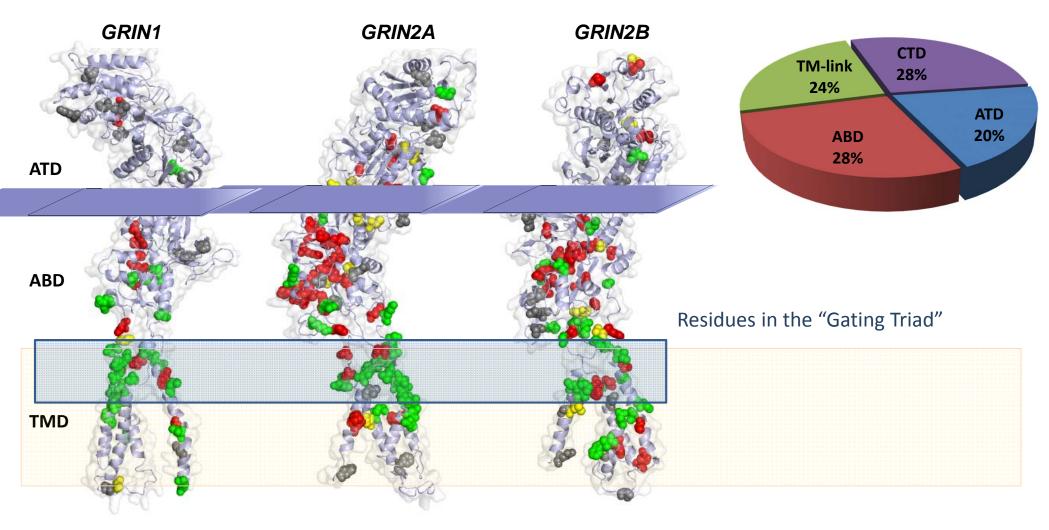
Loss of Function

Uncertain

No Effect


ATD N=41 Variants
22% LOF
12% GOF
66% uncertain, no effect

ABD N=88 Variants
56% LOF
12% GOF
32% uncertain, no effect


TMD N=106 Variants
24% LOF
62% GOF
14% uncertain, no effect

2019 CFERV, unpublished

## **Functional effects vary by domain**



## **Functional effects vary by domain**



# Summary

- 1. <u>Functional</u> and <u>structural</u> analyses of variants allows stratification of patients, which is essential for precision medicine approaches
- 2. We established CFERV to <u>provide functional data</u> world-wide for all GRIN variants.

  \*\*Results are posted pre-publication to a publicly accessible server\*\*
- 3. Enrollment of GRIN patients in registries (UC-Denver, Leipzig) that track natural history and response to treatments is essential.

## **Future Directions**

- 1. We are studying mice harboring *GRIN* variants to study mechanisms that contribute to patient phenotype and evaluate genetic and pharmacological treatment strategies.
- 2. Ten mouse lines exist or are being made

**GRIN2A-S644G**, GRIN2A-P552R, **GRIN2A-KO**, GRIN2D-V667I

We are collaborating with Wayne Frankel and Ann Poduri

GluN2B-E413G

We are working on this transgenic line

GluN2B-M818T

We are currently making this transgenic line

GluN2A-V685G, GluN2B-S1413L GRIN1-Q536R, **GRIN1-Y647C**, GRIN1-L655Q

### **Acknowledgements, Support, Disclosure**



#### **Laboratory members**

Yuchen Xu Rui Song Lingling Xie Riley Perszyk Chad Camp Tue Banke Jing Zhang Sukhan Kim James Allen Scott Myers Chris Sinon

#### **Collaborators (Other)**

Tim Benke (UC Denver)
Johannes Lemke (Leipzig)
Yuwu Jiang (First Peking)
Ann Poduri (Harvard)
Wayne Frankel (Columbia)
Elias Aizenman (Pitt)
Katherine Roche (NIH)
Lonnie Wollmuth (Stoneybrook)
Alasdair Gibb (UCL)
Tim Lovenberg (Janssen)

#### **Collaborators (Emory)**

Hongjie Yuan (Pharmacology) Sooky Koh (Pediatrics) Andy Jenkins (Anesthesiology) Dennis Liotta (Chemistry) Pieter Burger (Chemistry) Dave Menaldino (Chemistry)

#### **Funding:**

NIH-NINDS CURE Austin's Purpose Fnd CureGRIN Fnd

#### Disclosure (2020):

NeurOp (co-founder) Sage, Eumentis (SAB) Janssen (grant, consult) Allergan (grant) Biogen (grant)



